DECODING ACTION AND OBSERVATION OF HAND GESTURES IN THE HUMAN BRAIN

HUNTER R. SCHONE^{1,3,4}, TAMAR R. MAKIN^{2,3*}, AND CHRIS I. BAKER^{4*}

*EQUAL CONTRIBUTION

Localizing multisensory hand BCI sites

Hand use is multisensory

Limited spatial coverage of intracortical **BCI technology**

Lateral occipitotemporal cortex is activated by **hand actions**

2) Our approach: fMRI experimental design

Where in the brain can we access both visual and motor aspects of hand representation?

3 Motor and visual hand activity

Defining regions of Interest

Takeaways: Should occiptiotemporal cortex be a future BCI implant site?

- Lateral occipitotemporal cortex (LOTC) is activated by both actions and observations of hand gestures • LOTC contains an action (anterior) and observation (posterior) spatial organization
- Similar action decoding in LOTC as sensorimotor cortex
- LOTC has increased visuomotor correspondence
- LOTC action representational structure similar to sensorimotor cortex

¹University of Pittsburgh; ²University of Cambridge; ³University College London; ⁴National Institutes of Health

