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Abstract
Objective: The notion of a somatotopically organized motor cortex, with movements of different
body parts being controlled by spatially distinct areas of cortex, is well known. However, recent
studies have challenged this notion and suggested a more distributed representation of movement
control. This shift in perspective has significant implications, particularly when considering the
implantation location of electrode arrays for intracortical brain–computer interfaces (iBCIs). We
sought to evaluate whether the location of neural recordings from the precentral gyrus, and thus
the underlying somatotopy, has any impact on the imagery strategies that can enable successful
iBCI control. Approach: Three individuals with a spinal cord injury were enrolled in an ongoing
clinical trial of an iBCI. Participants had two intracortical microelectrode arrays implanted in the
arm and/or hand areas of the precentral gyrus based on presurgical functional imaging. Neural
data were recorded while participants attempted to perform movements of the hand, wrist, elbow,
and shoulder.Main results:We found that electrode arrays that were located more medially
recorded significantly more activity during attempted proximal arm movements (elbow, shoulder)
than did lateral arrays, which captured more activity related to attempted distal arm movements
(hand, wrist). We also evaluated the relative contribution from the two arrays implanted in each
participant to decoding accuracy during calibration of an iBCI decoder for translation and
grasping tasks. For both task types, imagery strategy (e.g. reaching vs wrist movements) had a
significant impact on the relative contributions of each array to decoding. Overall, we found some
evidence of broad tuning to arm and hand movements; however, there was a clear bias in the
amount of information accessible about each movement type in spatially distinct areas of cortex.
Significance: These results demonstrate that classical concepts of somatotopy can have real
consequences for iBCI use, and highlight the importance of considering somatotopy when
planning iBCI implantation.

1. Introduction

Intracortical brain–computer interfaces (iBCI) take
advantage of natural movement-related neural
activity that remains intact after spinal cord injury

[1–4]. This activity can be decoded into velocity com-
mands for a variety of end effectors, such as computer
cursors and advanced prosthetic limbs. Typically,
iBCI electrodes are targeted to areas of the precentral
gyrus that show a high degree of hand-related activity
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[2–9]. For iBCI control of non-anthropomorphic
effectors (e.g. computer cursors), participants often
explore various imagery strategies and select one
based on trial-and-error and preference[10]. Imagery
strategies such as controlling a computer mouse in
front of the body [9, 11], reaching with the entire
arm [9, 11], and moving individual digits in the hand
[9] have been reported in studies of iBCI cursor con-
trol. We speculate that the chosen imagery strategy
may reflect the distribution of movement-related sig-
nals for various body parts that are sampled with the
implanted electrode arrays.

Somatotopy—the idea that movements of differ-
ent body parts are controlled by topographically dis-
tinct areas of motor cortex—has been an active field
of study over the last century [12–17]. Beginning with
Penfield and Boldrey’s foundational cortical map-
ping studies, electrical stimulation of motor cortex
revealed discretemotor representations for individual
body parts[18]. The spatial arrangement of the body
along motor cortex includes the face (most lateral),
followed by the hand, arm, trunk, leg, and the foot
at midline. These results have been further replicated
using functional magnetic resonance imaging (fMRI)
[19, 20] and electrocorticography (ECoG) [21–24].

Intracortical recordings have much higher spatial
resolution than cortical stimulation, fMRI, or ECoG.
Studies in non-human primates [25–28] and humans
[3, 29] have shown that activity recorded froma single
electrode can be related to movements of multiple
body parts, particularly across the arm and hand dur-
ing coordinated actions. When using cortical stim-
ulation in conjunction with intrinsic signal optical
imaging, one group found that movement repres-
entations within the upper limb region were highly
distributed and overlapping, but with local regions
exhibiting more dominant responses to certain body
parts [30]. Further, one recent study using intra-
cortical recordings in humans measured significant
neural activity associated with speaking in an area of
the precentral gyrus that was thought to be specific
to hand actions, significantly challenging the idea of
a rigid somatotopic organization [15].

iBCIs take advantage of the native patterns
of movement-related information for control but
have limited spatial coverage of the cortical surface.
Therefore, it is critical to understand whether elec-
trode array placement should consider the gross
somatotopy that has been historically observed
using imaging and cortical stimulation techniques,
or whether local intracortical recordings can con-
sistently capture whole-body movement-related
information—making array placement along the
precentral gyrus less critical. In the present study,
we sought to characterize the underlying soma-
totopy for three iBCI study participants with tet-
raplegia and evaluate how the available motor
information impacts iBCI performance. A better
understanding of somatotopy at the spatial scale of

intracortical recordings and how it interacts with
imagery strategies could potentially improve iBCI
performance and reduce the amount of mental effort
required for control by harnessing themost dominant
movement representations.

Three iBCI study participants underwent pre-
surgical fMRI scanning to map hand-related activ-
ity on the precentral gyrus, guiding the placement of
two intracortical microelectrode arrays. To quantify
the underlying somatotopy at each implant site, we
recorded multi-unit neural activity during attempted
movements of the hand, wrist, elbow and shoulder.
While some channels on both arrays were modulated
by all four movement types, we observed a spatial
gradient in the proportion of unitsmodulated by each
attempted movement in alignment with the expected
somatotopic organization—more hand-related activ-
ity laterally and shoulder-related activitymedially.We
also examined the neural activity during iBCI calibra-
tion formultiple tasks and found that this activity was
strongly impacted by imagery strategy and array loc-
ation. Reach-related activity was more accessible on
medially located arrays, while activity related to more
distal movements (i.e. wrist and grasp) was more
strongly represented on arrays closer to the anatom-
ical hand knob. Overall, we found that there was a
spatial bias of movement-related information along
the mediolateral axis of precentral gyrus that influ-
ences the imagery strategies that are likely to lead
to successful iBCI control. These results highlight
the importance of implant location for modern iBCI
devices that currently offer limited spatial coverage of
the cortex.

2. Methods

This study was conducted under an Investigational
Device Exemption from the Food and Drug
Administration and approved by the Institutional
Review Boards at the University of Pittsburgh and
the University of Chicago. This study is registered on
clinicaltrials.gov (NCT01894802). Informed consent
was obtained from all participants before any study
procedures were conducted. All research was conduc-
ted in accordance with the Declaration of Helsinki
and with local statutory requirements.

2.1. Participants
Three participants (P2, P3, and P4) took part in
this study. P2 was a 28-year-old man at the time of
implant with tetraplegia due to a C5 ASIA B spinal
cord injury 10 years prior. P3 was a 28-year-old man
at the time of implant with tetraplegia due to a C6
ASIA A spinal cord injury in 12 years prior. P4 was
a 31-year-old man at the time of implant with tetra-
plegia due to a C4 ASIA A spinal cord injury 11 years
prior. P2 and P3 have some residual movement of the
upper arm and limited wrist extension, but no hand
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function. Participant P4 has no volitional movement
below the neck.

2.2. Implants
All participants had two intracortical microelectrode
arrays (Blackrock Neurotech, Salt Lake City, UT,
USA) implanted in motor cortex on the precentral
gyrus (two 88-channel arrays for P2 and two 96-
channel arrays for both other participants). Two par-
ticipants (P2 and P4) had one array placed in the
putative hand knob region [31] and the other more
medially in what would be expected to be an arm-
related area of motor cortex. P3 had both arrays
implanted in the hand knob region of motor cor-
tex. All participants additionally had two 64-channel
arrays implanted in somatosensory cortex, which
were not used for this study.

2.3. Presurgical fMRI
Prior to undergoing surgical implantation, all parti-
cipants underwent functional neuroimaging scans at
the University of Pittsburgh’s Magnetic Resonance
Research Center (RRID: SCR_025215). Detailed
information on the neuroimaging scanning pro-
cedures and fMRI analyses for mapping somato-
sensory cortex have been previously reported for
these participants [32]. For each participant, a
high-resolution T1-weighted structural MRI (3D-
MPRAGE sequence: 1 mm3 voxel size) was collected
(see previous report for sequence parameters). The
functional scans were acquired using a T2∗-weighted
EPI acquisition sequence (2 mm3 voxel size, TR= 2 s,
TE = 30–34 ms). One functional run was collected
for each subject to map hand-related activity with the
total number of volumes varying across subjects (P2:
90; P3: 268; P4: 102).

2.3.1. fMRI task design
The fMRI task design varied across participants.
For all tasks, participants were visually cued to per-
form attempted movements of a given body-part.
Participants were instructed to actively attempt each
movement even though many could not be per-
formed overtly, due to their spinal cord injury. For P2,
the task was a block design including 20 s of repeated
hand grasping followed by 20 s of rest. There were
four repetitions of the movement block within the
single functional run (i.e. 3min total). For P3, the task
involved multiple body-parts: lips, shoulder, elbow,
wrist and hand. The task started and ended with 18 s
of rest (i.e. fixation). For each movement, instruc-
tional text of the body-part to move was displayed
(2 s), followed by 10 s where the participant was to
make repeated movements of the instructed body-
part. The ordering of the body-parts was pseudo-
randomized with five repetitions of each body-part
in the single functional run (i.e. 8 min and 56 s).
Finally, for P4, the task was a block design includ-
ing attempted hand grasping and rest. Like P3, there

were 18 s of rest at the beginning and end of the func-
tional run. Alternately, the hand grasping trial lasted
12 s followed by 12 s of rest. Themovement block was
repeated seven times in the single functional run (i.e.
3 min, 24 s).

2.3.2. Cortical surface reconstruction
Cortical surface reconstructions were produced using
FreeSurfer (v. 7.1.1) and Connectome Workbench
(humanconnectome.org) software. Structural T1
images were used to reconstruct the pial and white-
grey matter surfaces using Freesurfer [33]. Surface
co-registration across hemispheres and participants
was done using spherical alignment. Individual sur-
faces were nonlinearly fitted to a template cortical
surface, first in terms of the sulcal depth map, and
then in terms of the local curvature, resulting in an
overlap of the fundus of the central sulcus across
participants.

2.3.3. fMRI analysis
FunctionalMRI data processingwas carried out using
FMRIB’s Expert Analysis Tool (FEAT; Version 6.0),
part of FSL (FMRIB’s Software Library, Oxford, UK),
in combination with custom bash, Python (version
3) and Matlab scripts (R2019b, v9.7, The Mathworks
Inc, Natick, MA, USA). A separate regressor was used
for each high head motion volume (deviating more
than 0.9 mm from the mean head position). P2 and
P4 had no high motion volumes. However, P3 had 16
outlier volumes (5% total volumes), with head posi-
tion deviatingmore than 0.9mm from themean posi-
tion for a given volume. All other fMRI preprocessing
parameters were the same as previously reported [32].

For each functional run, we applied a general lin-
ear model using FEAT. Hand grasping activity was
modeled as a contrast against rest (i.e. nomovement).
In the case of P3, where different body parts were
moved within a single run, the activity of each of
the movements was contrasted against rest. The res-
ulting z-scored activity maps were registered to each
participant’s structural T1 using FLIRT [34, 35]. The
registered activity was then masked within a cus-
tom precentral gyrus region of interest, designed to
approximately capture the entirety of the precent-
ral gyrus. The mask was constructed by combining
6 regions extracted from a template Glasser cortical
surface including: Brodmann area 4, 6mp, 55b, dorsal
area 6, ventral area 6, and frontal eye fields [36]. The
mask was then projected onto the individual subject
brains via the reconstructed anatomical surfaces.

2.3.4. Hand functional activity visualization
To visualize hand activity on each subject’s 3D cortical
surface, activity maps were projected to the cor-
tical surface using workbench command’s volume-
to-surface-mapping function, which included a rib-
bon constrained mapping method. For the fMRI

3



J. Neural Eng. 22 (2025) 026004 N G Kunigk et al

Figure 1. Functional and neuroanatomical landmarks surrounding the implant sites of each participant’s recording arrays. (a).
During presurgical functional neuroimaging scans, participants performed attempted hand grasping movement of the right hand
(top row). Minimally thresholded hand activity is visualized on each participant’s cortical surface (z-threshold 3.1; bottom row).
Further, the location of each participant’s recordings arrays, approximate coordinates of the anatomical hand knob (visualized as
an omega (Ω) symbol) and the center of gravity of hand functional activity (visualized as an asterisk) are overlaid on their
functional hand activity. A 25.0 mm black bar is provided as a scaling reference. (b) Distances (mm) were computed between the
center of each recording array to the center of gravity (CoG) of hand activity (left) and the anatomical hand knob (right).

visualization in figure 1(a), we applied a minimum
z-threshold of 3.1 to the activity map.

2.3.5. Computing distances to anatomical hand knob
and hand activity
To compute the distance between the location of each
electrode array to either the anatomical hand knob
or the center of gravity of the hand functional activ-
ity, we first projected each participant’s hand func-
tional activity onto a flattened version of the cortical
surface (approach described in https://freesurfer.net/
fswiki/FreeSurferOccipitalFlattenedPatch and [32]).
We then extracted the position of the center of grav-
ity of the hand functional activity (visualized as an
asterisk (∗) symbol in figure 1(a)). Then, the locations

of the recording arrays on the cortical surface were
determined using the surgical implant photos as a
guide. It is important to note that there is a small
degree of error in the method used to compute these
distances (likely 1–3 mm), due to the surgical images
being used as the sole reference for defining the loc-
ation of the arrays on the cortical surface recon-
struction. A photographic reference makes it diffi-
cult to generate a spatially exact representation of
the array location on both flattened and unflattened
cortical surfaces relative to surrounding functional
and neuroanatomical landmarks. 4 mm × 4 mm
squares were constructed and registered on each
participant’s flattened cortical surface (visualized as
boxes in figure 1(a)). Next, the anatomical hand
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knob position was selected by the research team and
validated by a neurosurgeon. The coordinate was
registered to both the flattened and pial cortical sur-
faces. The exact coordinate was modified to ensure it
landed on the ledge of the approximated cortical site
(visualized as an omega (Ω) symbol in figure 1(a)).
Finally, we computed the distance between the center
of each array to (1) the center of gravity of hand activ-
ity and (2) the anatomical hand knob. These distances
are plotted for each participant in figure 1(b). Based
on the array placement relative to the anatomical and
functional imaging data, we considered P2 and P4 to
have one array in the arm area and one array in the
hand area of the precentral gyrus. Alternately, P3 had
two arrays positioned within the hand area of the pre-
central gyrus.

2.4. Intracortical neural data recording
Neural data were acquired from the implantedmicro-
electrode arrays via digital NeuroPlex E headstages
and NeuroPort Neural Signal Processers (Blackrock
Neurotech, Salt Lake City, UT). Raw voltage data were
recorded at 30 kHz, filtered using a 1st-order 750 Hz
highpass Butterworth filter, logged as threshold cross-
ings at −4.5 times root mean square (per channel),
and binned at 50 Hz. Binned spike counts were con-
verted to firing rates [2, 37] via smoothing with an
exponential smoothing function with a 440 ms win-
dow (example shown in figure 2(d)). Participants
completed three different experimental tasks (soma-
totopy mapping, virtual arm and hand control, and
cursor control) as described below. All data ana-
lysis was performed using Python 3 along with the
numpy [38] and pandas [39] libraries. Plotting was
performed using the matplotlib [40], seaborn [41],
and plotly [42] libraries.

2.5. Somatotopy mapping task
For each experimental session of the somatotopy
mapping task, the participants were instructed to
attempt to perform one of fourmovements with their
right arm: full-hand grasp, wrist extension, elbow
flexion, or shoulder elevation (shrug) (figure 2(a)).
Each trial consisted of three phases: Baseline, in which
a fixation cross was displayed in the middle of the
screen and the participant was instructed not tomove
(3 s); Movement, in which the target movement type
was displayed on the screen and dictated out loud and
the participant was instructed to perform and hold
the requested movement (3 s); and Rest, in which
nothing was displayed on the screen and the par-
ticipant was instructed to relax (2 s) (figure 2(b)).
Targets were randomly ordered in blocks of 4 trials,
and 20 blocks (80 trials) were performed per exper-
imental session. Data was collected 8 years, 3 years,
and 1 year post-implantation for P2, P3, and P4,
respectively. Five sessions were collected with each
participant.

2.5.1. Tuning significance and depth of modulation
Todeterminewhether the neural activity on each elec-
trode was significantly modulated by a given attemp-
ted movement, we compared the firing rates meas-
ured during the Movement phase to those measured
during Baseline. The Baseline window was selected as
the 500ms before the start of theMovement phase. To
account for response time variability, the Movement
window was selected via the following technique:
first, for each session and movement type, firing rate
activity for each channel was averaged across all tri-
als. Then, principal components analysis (PCA; per-
formed with the scikit-learn [43] library) was per-
formed on the trial-averaged z-scored firing rate to
identify patterns of correlation across recorded chan-
nels. The first principal component captures themax-
imum variance across channels and is a proxy for
overall population activity [44, 45]. We identified the
time of the peak magnitude of this first principal
component (figure 2(c)). The Movement window for
that session and movement type was then defined as
500 ms of the movement period centered around that
peak (figure 2(d)). Total threshold crossings in the
Baselinewindowwere subtracted from total threshold
crossings in the Movement window for each trial. For
each movement type, channels were considered sig-
nificantly modulated if this distribution across trials
was significantly different than 0 using a two-tailed
one-sample t-test (α= 0.0125, Bonferroni correction
applied for the four movement types; all statistical
tests performed with the scipy [46] library). Depth
of modulation for each channel was defined for each
trial by subtracting the average Baseline window fir-
ing rate from the Movement window firing rate and
recording the greatest absolute change in firing rate
(positive or negative), and then averaging these val-
ues for all trials to a target (figure 2(e)).

2.5.2. Movement classification
Movement type was classified using a Naïve Bayes
classifier applied to the 500 ms Movement window
as defined for the Tuning analysis in section 2.5.1.
For each channel and each trial, the total spike count
across all time bins in the Movement window was
calculated and used as a feature for the classification
algorithm. For each session, full leave-one-out cross-
validation was performed, and the classification res-
ults for the left-out trials were concatenated together
to obtain 80 predicted movement types for each ses-
sion. Data from the five sessions was combined and
summarized as a confusion matrix. Chance level was
25% given four movement types. Overall classifica-
tion accuracywas computed as the percentage of trials
correctly classified across the five sessions.

2.6. Offline decoding of movement kinematics
Firing rate data (as described in section 2.4) from two
distinct iBCI tasks was analyzed and used to train

5



J. Neural Eng. 22 (2025) 026004 N G Kunigk et al

Figure 2. Somatotopy mapping task and tuning significance determination: (a) Participants were asked to perform or attempt to
perform four movements of the arm and hand as illustrated. (b) Each trial consisted of a 2 s Baseline phase in which participants
prepared for the next movement, a 3 s Movement phase in which the movement was performed and held as soon as the
corresponding word appeared on the screen, and a 3 s Rest phase in which the movement was released. (c) For each session,
neural activity recorded on each electrode was z-scored and averaged across trials of the same movement type and reduced to the
top principal component via PCA (PC1, unitless). The time of the maximum value of this component was used as center of the
movement period (tM) for that movement type. (d) Across all trials of a given movement type, the total spike count recorded
during the last 0.5 s of the Baseline phase was compared to the total spike count recorded during a 0.5 s period centered around
tM using a one-sample t-test on the difference to determine tuning significance for each channel. (e) Each channel was analyzed
separately for tuning significance across different movement types. Depth of modulation for each channel is indicated by the
color scale for an example session from P4’s lateral array shown here. Each square represented a single electrode on the 10× 10
array. Dots indicate channels found to be significantly modulated to a particular movement type.

decoders for translation and grasp prediction. For
both tasks, the data analyzed was from the open-loop
calibration portion of the experimental session, dur-
ing which participants were instructed to observe a
computer performing the task and imagine following
along with imagined movements of the arm, wrist,
and/or hand as described below. Data was collec-
ted between 6–9 years post-implant for P2, 1 year
post-implant for P3, and between 1–12 months post-
implant for P4.

2.6.1. Virtual arm and hand control task
Participants were instructed to follow along with a
3-dimensional model of an arm and hand (MuJoCo
[47]) as it moved across the workspace to reach
target objects and then grasped the object and
moved it to a new target location. Neural data and
computer-controlled kinematics (3D velocity of the
hand endpoint and 1D grasp velocity) were recorded.
A decoder, using indirect optimal linear estimation
with ridge regression [2, 48], was trained offline for
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each session using full leave-one-out cross valida-
tion. The following encodingmodel was used to relate
neural activity to intended translation and grasp
velocities:

f = b0 + bxvx + byvy + bzvz + bgvg

where f is the z-scored firing rate of a given chan-
nel during intended movement described by a 4-
dimensional velocity vector (vx, vy, vz, vg) and b0,
bx, by, bz, bg are the coefficients that vary for each
channel.

Translation decoding performance was evaluated
as the average of the squared correlation (r2) between
predicted and actual X, Y, and Z velocities during
movement periods of the task. Grasp decoding per-
formance was quantified as the squared correlation
(r2) between predicted and actual grasp velocities.
Decoding performance was computed across all tri-
als for a given session, resulting in one translation r2

and one grasp r2 per day. 45 sessions were analyzed
for P2, 24 for P3, and 30 for P4. 18–36 trials of calib-
ration data were typically collected in each session.

Decoder training was performed with three con-
ditions: using all channels across both arrays, using
only channels from the medial array, and using only
channels from the lateral array. A Friedman test
(α = 0.05) was performed for each task to compare
the decoding r2 distributions across sessions when
using each condition. When significant differences
were observed, post-hoc pairwise Wilcoxon signed-
rank comparisons were performed (p < 0.0167,
Bonferroni correction applied for the three compar-
ison combinations) on decoding performance values
between conditions session-by-session to account for
cross-session variability, e.g. in signal quality which
could affect decoding performance.

2.6.2. Cursor control task
The second paradigm involved a 2D cursor center-out
click-and-drag task. Here, participants were asked to
follow along with a cursor as it moved from the cen-
ter to one of eight possible peripheral targets. After
reaching the target, the participant was instructed to
either click and hold or release a previously held click.
Translation decoding was accomplished via the same
decoder as described in 2.6.1. Imagery strategies were
not rigorously controlled for cursor translation, so
we refer to their imagery as ‘abstract imagery’ for
this task. Participants often reported using computer
mouse imagery (involving coordinated movements
of the shoulder, elbow, and wrist). Participants also
reported simply ‘willing’ the cursor to move in the
indicated direction or focusing on the general con-
cepts of specific directions to drive iBCI control as
opposed to thinking of a given movement of the
upper arm. Decoder performance was quantified as
the average of the squared correlation (r2) between
predicted and actual X and Y velocities during move-
ment periods of the task.

Cursor click was decoded from neural activity
associated with attempted whole-hand grasp (the
same imagery as in the 3D object pursuit task), but
the decoding performed here was to classify discrete
click vs unclicked states (as opposed to grasp velo-
city). Again, imagery was not tightly controlled for
the historical data used here and on occasion parti-
cipants reported using a finger pressing action (e.g.
left mouse click) for this dimension of control. A hid-
den Markov model-based decoder [11] was trained
using full leave-one-out cross-validation on all click-
unclick epochs. Decoder performance was quantified
as the proportion of time points forwhich the decoder
correctly classified the clicked or unclicked state. 43
sessionswere analyzed for P2, 18 for P3, and 25 for P4.
Each experimental session contained 12 or 13 click-
unclick epochs.

Finally, we collected additional sessions of iBCI
cursor control calibration in which we asked par-
ticipants to specifically imagine controlling cursor
translation with movements of the wrist. Specifically,
we asked participants to imagine using their pronated
wrist as a joystick to control the computer cursor
(i.e. imagining wrist extension, flexion, abduction,
and adduction to move the cursor up, down, left, and
right, respectively), similar to driving a wheelchair
with a goalpost joystick. The decoder used for velo-
city estimation was the same optimal linear estima-
tion algorithm described in 2.6.1, and the three con-
ditions for offline training were the same as described
above (both arrays, onlymedial, and only lateral). For
decoder training, full leave-one-out cross validation
was performed on all trials of a single session (ses-
sions consisted of 40 trials) to obtain robust decod-
ing performance metrics. Decoder performance was
quantified as the average of the squared correlation
(r2) between X and Y velocities during movement
periods of the task. Six sessions of wrist imagery
cursor control were collected for P2, six for P3, and
eight for P4. These sessions were analyzed separ-
ately from the historical sessions of cursor control
data that generally used reach-related imagery for
translation.

3. Results

3.1. Somatotopy mapping
First, we investigated the patterns of neural activ-
ity recorded from two intracortical microelectrode
arrays implanted in the arm and/or hand region
of the precentral gyrus (figure 1) while participants
attempted to perform movements of the hand, wrist,
elbow, or shoulder (figure 2). All participants showed
significant modulation on a subset of channels on
both electrode arrays for all attempted movements
(figure 3). For P2, an average of 47% of channels
on the medial array were modulated during at least
one movement type across the five sessions, 43% on
lateral. For P3, an average of 44% of channels on
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Figure 3. Somatotopic gradient in movement tuning across arrays: (a) for each participant and each array, the number of
channels significantly tuned to a movement type was divided by the total number of channels on that array significantly
modulated to any movement to obtain the proportions presented here. Each point represents a single experimental session (five
sessions per participant). (b) For each session, a Naïve Bayes classifier was trained to classify movement type from neural activity
in the Movement phase period (centered on tM) using leave-one-out cross validation across trials. Classification results on the
held-out trial were concatenated for each session, and results were combined for all sessions to produce the confusion matrices
presented here. 400 trials are included in each confusion matrix.

the medial array were modulated during at least one
movement type, 55% on lateral. P4 had an aver-
age of 53% of channels modulated on the medial
array and 82% on the lateral. Figure 3(a) shows
the proportion of channels that were significantly
modulated for a specific movement type for each
array from each participant. For P2 and P4, prox-
imal arm movements (elbow and shoulder) modu-
lated a larger percentage of channels on the medial
array than on the lateral array, while distal arm
movements (grasp and wrist) modulated more chan-
nels on the lateral array. This distribution aligns
with what would be expected based on the loca-
tion of the arrays (figure 1) and the accepted notion

of somatotopy. In contrast, for P3, who has both
arrays implanted in the anatomical hand knob region
(figure 1), both arrays displayed a similar trend, with
more distal movements (e.g. grasp) represented on
a greater percentage of channels than more prox-
imal movements. Importantly, all electrode arrays
had some channels that recorded significantly modu-
lated activity during each of themovement types, sug-
gesting that there are not rigid spatial borders asso-
ciated with each movement type, but rather a soma-
totopic gradient—where proximal arm movements
are more dominantly represented medially and distal
arm movements are more dominantly represented
laterally.
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Figure 4. Virtual arm and hand decoding: (a) Participants were asked to observe a 3D object pursuit grasp-and-carry task and
follow along with imagined movements of the arm. (b) An indirect OLE decoder was trained on neural activity during the reach
and carry phases of the task using leave-one-out cross validation across trials to predict X, Y, and Z velocities. Decoder
performance for translational velocity was quantified as the average of the squares of the correlations between actual and
predicted X, Y, and Z velocities for each session. (c) The same decoder was trained separately on neural activity from the grasp
and release phases of the task using leave-one-out cross validation across trials to predict grasp velocities. Decoder performance
was quantified as the squared correlation between actual and predicted grasp velocities for each session. For (b) and (c), black
diamonds represent outliers. Bolded, horizontal black bars indicate significant differences on the Friedman test, and the brackets
below represent post-hoc pairwise Wilcoxon signed-rank test. ∗p< 0.05, Friedman test. ∗p< 0.0167, Wilcoxon signed-rank test
after correction for multiple comparisons.

To confirm that the activity sampled from the
neural population contained selective information
about each movement type, as opposed to a simple
non-selective move vs. rest signal, we used a Naïve
Bayes classifier to predict movement type. In all parti-
cipants, the neural population activity enabled signi-
ficantly greater than chance prediction of movement
type (figure 3(b) diagonal values, chance level= 25%
or 25 trials given 100 trials of each movement type).
Participant P2 had an overall classification success
rate of 90.0%; P3, 90.9%; and P4, 80.7%.

3.2. Virtual arm and hand decoding
The single channel tuning results are suggestive of
a somatotopic gradient along the precentral gyrus.
Next, we investigated how this spatial organization
can impact decoding for different types of iBCI
tasks and imagery strategies. The decoding accuracies
for arm translation and grasp velocity were found
to be significantly dependent on recording array.
When participants attempted to follow along with
3D movements of a virtual arm—an explicit imagery
strategy involving mainly movements of the elbow
and shoulder (figure 4(a))—offline decoding accur-
acy was significantly higher when using recordings
from themedial array as compared to the lateral array
for all participants (figure 4(b), P2 p = 0.0071; P3
p < 0.001; P4 p = 0.027; Wilcoxon signed-rank test).
Performance was always highest when using record-
ings from both arrays.

Grasp velocity decoding was also highly depend-
ent on array location. For P2 and P4, decoding with
only the lateral array resulted in significantly greater
performance than decoding with only the medial
array (farther from the anatomical hand knob, see

figure 1) (P2 p < 0.001; P4 p < 0.001; Wilcoxon
signed-rank test).

In contrast, in P3—who had both arrays at
roughly the same location relative to the anatom-
ical hand knob (see figure 1)—decoding performance
decreased slightly when using only one array but was
not significantly different between arrays (p > 0.05,
Wilcoxon signed-rank test).

3.3. Cursor control decoding
To validate these results with a second task type, we
analyzed decoding performance during a 2D cursor
center-out task with a click-and-drag component
(figure 5(a)). Typically, a similar imagery strategy is
used for cursor and virtual arm control. Imagined
arm movements are used to drive the translational
velocity, while grasp imagery is used to control grasp
velocities or click/unclick actions. However, given
that the visual feedback is of a computer cursor rather
than an anthropomorphic arm, imagery is less con-
strained and may be more abstract.

Translation decoding accuracy (figure 5(b)) was
not significantly different for the medial and lateral
array for P2 and P4 (p > 0.05, Wilcoxon signed-
rank test). However, P3’s translation decoding accur-
acy followed the same trend as for the virtual arm task
(figure 4(b)): decoding with signals from the medial
array was more accurate than decoding with signals
from the lateral array (p < 0.001, Wilcoxon signed-
rank test).

Click classification accuracy (figure 5(c)), which
relies on hand grasping and opening imagery, fol-
lowed a similar trend as continuous grasp velocity
decoding (figure 4(c)). Decoding with the lateral
array resulted in significantly greater accuracy than
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Figure 5. Cursor control decoding: (a) participants were asked to observe a 2D cursor center-out click-and-drag task and follow
along with reaching imagery during translation and imagined grasping movements during the click and release phases of the task.
(b) The same indirect OLE decoder from figure 4 was trained on neural activity during the translation phases of the task using
leave-one-out cross validation across trials to predict X and Y velocities. Decoder performance was quantified as the average of the
squared correlations between actual and predicted X and Y velocities for each session. (c) A hidden Markov model discrete click
classification decoder was trained on neural activity during the entire task using leave-one-out cross validation on all click-unclick
epochs. Decoder performance was quantified as the proportion of timepoints for which the decoder correctly predicted a clicked
or unclicked state for each session. Horizontal dashed line indicates chance accuracy (50%). (d) Participants were asked to observe
a 2D cursor center-out click-and-drag task and follow along with imagined movements of the wrist (flexion, extension, abduction,
adduction) as opposed to movements of the entire arm during the reach and center phases of the task. The same indirect OLE
decoder was trained on neural activity during the reach and carry phases of the task using leave-one-out cross validation across
trials to predict X and Y velocities. Decoder performance was quantified as the average of the squared correlations between actual
and predicted X and Y velocities for each session. For (b), (c), and (d), black diamonds represent outliers. Bolded, horizontal
black bars represent Friedman test results, and the brackets below represent post-hoc pairwise Wilcoxon signed-rank test.
∗p< 0.05, Friedman test. ∗p< 0.0167, Wilcoxon signed-rank test after correction for multiple comparisons.

decoding with the medial array for P2 and P4 (P2
andP4: p< 0.001;Wilcoxon signed-rank test); decod-
ing with only the medial array reduced click decoding
accuracy to approximately chance level. In P3, who
has both arrays implanted near the anatomical hand
knob, offline click decoding accuracy using signals
recorded from either array showed no significant dif-
ference compared to using signals from both arrays
(P3: p> 0.05. Friedman test).

For the cursor control data in figure 5(d), par-
ticipants were asked to follow along in the center-
out task with imagined movements of the wrist to
control translation direction rather than arm move-
ments that are often used for cursor control, or as
was evaluated with the virtual arm and hand control
task. When using wrist-related imagery, decoding

accuracy differed between arrays for all participants.
For P2 and P4, decoding was significantly better
when using signals from the lateral array as compared
to the medial array (P2 p = 0.031; P4 p = 0.016;
Wilcoxon signed-rank test), which was not the case
when an abstract reaching imagery strategy was used
(figure 5(b)). In contrast, P3 maintained a similar
trend as with the whole-arm translation decoding
analysis (figure 4(b)), in which decoding with signals
from the medial array was significantly better than
decoding from the lateral array (p= 0.031, Wilcoxon
signed-rank test). This aligns well with the single
channel tuning results (figure 3(a)) for P3, showing
that generally there were significantly tuned chan-
nels for distal movements on both arrays located near
the anatomical hand knob. However, there was still
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a spatial gradient, in which the medial array tended
to have a higher proportion of channels tuned to
shoulder, elbow, and wrist movements while the lat-
eral array had a higher proportion of channels tuned
to grasp.

4. Discussion

Here, we demonstrate the effect of motor somato-
topy on the success of human iBCI imagery strategies
to generate movement-related neural activity. We
found that a somatotopic gradient is present in
the neural activity recorded from intracortical elec-
trode arrays implanted in the precentral gyrus. This
distribution of movement tuning appears to affect
decoding success during iBCI tasks, with individual
arrays contributing more to certain task paradigms
based on their location in the motor cortex and
the imagery utilized by the participants. Imagery
involving movements of the entire arm was more
easily decoded from the medial array (farther from
the hand knob, figure 4(b)), while imagined grasping
movements were only accurately decoded from arrays
placed near the anatomical hand knob (figures 4(c)
and 5(c)). Furthermore, for iBCI tasks involving
a non-anthropomorphic effector, i.e. a computer
cursor, participants used an imagery strategy that
led to broadly modulated activity across the precent-
ral gyrus (figure 5(b)), while a wrist-based imagery
strategy was more selective for areas of the pre-
central gyrus closer to the anatomical hand knob
(figure 5(d)).

4.1. Motor somatotopy
The observation of a somatotopic gradient from
single unit activity adds nuance to reports of broad
tuning in intracortical recordings [15, 27, 29, 49] and
traditional views of somatotopic organization [18,
23, 24, 50]. We observed modulated neural activ-
ity on all arrays during attempted movements of
the hand, wrist, elbow, and shoulder; however, the
degree of activity was highly dependent upon array
location—more distal movements were represented
on a greater proportion of channels on more lateral
arrays, andmore proximalmovementswere represen-
ted onmore channels onmedial arrays. The high clas-
sification accuracies obtained via theNaive Bayes ana-
lysis (figure 3(b)) indicate that this movement rep-
resentation is not simply a general movement-related
signal in motor cortex, but rather a pattern of activity
that is unique to each movement type. These trends
in neural activity align with the expected patterns
based on presurgical imaging and array placement
(figure 1), in which the lateral arrays for all parti-
cipants were placed near or within the anatomical
hand knob region and the medial arrays in P2 and P4
were placed more medially, where shoulder-related
activity was expected to be more prominent.

These results complement previous intracortical
studies in humans [3, 15, 29] showing broad tuning
across intracortical recording arrays. In these studies,
individual electrodes have been shown to be tuned to
multiple regions of the arm [3, 29] and the entire body
[15]. Here, the observed single channel tuning pat-
terns suggest that, while broadmovement tuningmay
be present in the areas of the precentral gyrus typic-
ally covered by intracortical recording arrays, there is
a nuance in the distribution of this activity that fol-
lows a spatial gradient more consistent with classical
notions of somatotopy.

4.2. Implications for human iBCI systems
Our study demonstrates that the amount of inform-
ation that can be decoded about a given move-
ment depends on the location of the electrode array
within the precentral gyrus. iBCIs designed to restore
hand movement or that use hand-related imagery for
control should place electrodes near the anatomical
hand knob. Conversely, iBCIs designed to restore arm
movements or that use reach-related imagery may
benefit from array placement more medially. Broad
coverage of the precentral gyrus would of course
provide access to themost complete set ofmovement-
related neural signals, allowing for intuitive control
based on the underlying somatotopic organization.
It is worth noting that the majority of iBCI studies
have implanted electrode arrays near the anatomical
hand knob enabling successful control of computer
cursors [3, 7, 11], robotic arms [2, 5, 29], or func-
tional electrical stimulation systems [6, 8] without
extensive training. One study has even reported con-
trol using only 120 s of calibration data for a naïve
iBCI user[4]. Our study demonstrated that it is pos-
sible to decode translation-related signals from the
anatomical hand knob—particularly with modifica-
tions to the imagery strategy—so if spatial coverage
is limited, targeting the hand knob is likely the best
choice.

The broad success of iBCIs suggests that there
is sufficient movement-related information that can
be accessed with intracortical electrode arrays for
a variety of iBCI tasks and array locations. In the
present study, we observed modulated neural activ-
ity associated with all movement types on all arrays,
but to varying degrees. This was particularly appar-
ent when trying to decode grasp behaviors, which
was nearly impossible using neural recordings from
medial areas of the precentral gyrus. It is possible
that control could be improved or could be more
robust with more targeted array placement. This
idea is perhaps supported by reports in the liter-
ature of very specific imagery strategies that have
been used for cursor control [4, 9, 11], though
the reason behind the effectiveness of or preference
for individual strategies has not been thoroughly
investigated.
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We expand upon previous anecdotal reports of
imagery strategies to show that across three parti-
cipants, we observe differences in the type of inform-
ation that is available for iBCI control based on array
placement. Importantly, we assessed performance
via offline decoding of movement parameters using
neural data collected during iBCI calibration when
the onscreen movements of the computer cursor or
virtual arm were under computer control (not iBCI).
During iBCI control, participants have visual feed-
back of their performance and errors and can make
corrections that may involve attempted actions that
are different from the imagery instructions. iBCI per-
formance likely benefits from this online experience,
and neurofeedbackmay lead to improvements in per-
formance. Here, we wanted to quantify neural mod-
ulation in the absence of online feedback to give an
idea of what signals are natively present in the neural
recordings in the absence of feedback, as these may
be the most intuitive control signals—particularly for
anthropomorphic effectors like a virtual or robotic
arm.

Participants in iBCI studies likely select their
preferred imagery strategy based on the type and
amount of salient information obtainable in the por-
tion of their precentral gyrus where the arrays were
implanted. This preference can also shift as parti-
cipants become more experienced with closed-loop
tasks, resulting in potentially more abstract imagery
strategies which enable the greatest degree of con-
trol. We expect that extensive iBCI use during cursor
control likely explains the lack of spatial selectiv-
ity for cursor translation decoding observed for P2
and P4 (figure 5(b)). When instructed to use wrist-
related imagery, all participants showed differences in
decoding performance that aligned with the under-
lying somatotopy (figure 5(d)). Given P3’s array
placements (near hand knob), the participant likely
generally relies on neural activity related to move-
ments of the wrist or elbow (vs. shoulder) to drive
cursor movement. P3 has reported being able to use
imagery of wrist movements or moving a computer
mouse on a table for successful iBCI control. For this
participant, the medial array was ideal for transla-
tion decoding regardless of task or imagery strategy
(figures 4(b), 5(b) and (d)).

Decoding of grasping movements followed a
more consistent trend between the virtual arm and
hand control and cursor control tasks. For P2 and
P4, themedial electrode arraywas effectively unusable
for the decoding of grasping movements (figures 4(c)
and 5(c)). For P3, with both electrode arrays located
on the anatomical hand knob (figure 1(b)), training a
grasp decoderwith only information from either elec-
trode array resulted in essentially the same perform-
ance, implying that both recording locations con-
tain the same amount of grasp-related information.
It appears likely that grasp-related decoding would

have been difficult if not impossible had neither elec-
trode array been implanted in the anatomical hand
knob region. These results could benefit future iBCI
studies by informing presurgical planning strategies
that also take into consideration local cortical topo-
graphy and vasculature [32]. Targeted array place-
ment, which could be accomplished through pre-
surgical imaging analyses focused on decodability,
could take advantage of the underlying somatotopy
to ensure adequate performance on desired iBCI tasks
with intuitive imagery.

4.3. Limitations
All participants had chronic tetraplegia resulting in
paralysis of some of the muscles in their upper limb.
Some previous studies have reported a reorganiza-
tion of motor cortex due to long term disuse, which
may impact the generalizability of our findings [51].
However, a number of studies in people with chronic
tetraplegia and amputation suggest that post-injury
reorganization of sensorimotor cortex is limited [52–
55]. Furthermore, given that iBCIs are intended to
assist or replace functions that have been lost due to
injury or disease, the key takeaway is that the signals
most readily accessible for iBCI control vary based
on the location of intracortical recordings in the pre-
central gyrus. As noted in the methods, the electrode
arrays used in this study are implanted on the surface
of the precentral gyrus and not on the bank of the
central sulcus. In other words, the arrays are just bey-
ond the boundaries of primary motor cortex (BA4)
[56–58], as defined by standard cortical atlases [36].

With only three study participants, there are
potential limitations to the generalizability of these
findings. However, the findings did not seem to be
impacted by the participants’ degree of residual func-
tion. P2 and P4 each had one array in ‘arm area’ of
the precentral gyrus and one array in the ‘hand area’.
P2 had residual function that enabled him to overtly
perform the shoulder, elbow, and wrist movements
in the somatotopymapping task, while P4 was unable
to perform any of the movements. However, the res-
ults (figure 3) were quite similar with themedial array
showing a greater percentage of channels tuned to
proximal armmovements and the lateral array show-
ing more tuning for hand movements. The decod-
ing results (figures 4 and 5), obtained while the par-
ticipant kept their own arm and hand at rest, were
also similar in that hand-related actions could only
be decoded from the lateral array for P2 and P4.

The decoding analyses presented here were
performed offline using calibration data in which
the participant only had visual feedback of
computer-controlled movements. This was inten-
tional to eliminate any influence of online perform-
ance and corrections, whichmay cause the participant
to deviate from the instructed imagery strategy.
However, it is important to note that participants
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were experienced with iBCI tasks and knew they
would be using the decoder trained during calib-
ration for brain-controlled tasks later in the session.
Therefore, they may have intentionally or uninten-
tionally altered their imagery strategy to produce
neural activity that they knew from experience would
be more effective. However, we suspect that this had
a minimal impact on the results given that the iBCI
decoding results for two types of tasks (virtual arm
and cursor control) aligned well with the distribu-
tion of neural activity observed with the somatotopy
mapping task, which was never used to calibrate a
BCI decoder. Neural activity was more broadly tuned
during attempted cursor control as compared to vir-
tual arm control, suggesting that successful control of
anthropomorphic effectors may be more constrained
by the underlying somatotopy.

5. Conclusions

This study demonstrates a spatial gradient of move-
ment representations along the human precentral
gyrus. The number of channels on each electrode
array that responded to movements of the hand,
wrist, elbow, and shoulder depended on the implant
location in the manner predicted based on expec-
ted motor somatotopy. This spatial organization was
found to be highly relevant for motor decoding of
translation and grasp during iBCI tasks. Future iBCI
studies will likely benefit frompresurgical planning to
identify cortical areas with a predominance of neural
activity that aligns with the desired functions of the
iBCI.
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