USING MULTIMODAL NEUROIMAGING TO GUIDE **IMPLANTATION OF BRAIN-COMPUTER INTERFACES**

HUNTER R. SCHONE^{*1}, JOHN DOWNEY², STEPHEN FOLDES³, CHARLES GREENSPON², FANG LUI¹, NICOLAS KUNIGK¹, CECI VERBAARSCHOT¹, ROBERT GAUNT^{1,4} AND JENNIFER COLLINGER^{1,4}

1 How do we target **electrode placement** for brain-computer interfaces?

Provide artificial

sensory feedback

2 Our Approach: from mapping to implantation to stimulation

- 5 human male study participants with cervical spinal cord injuries
- Pre-implant **fMRI** and/or **MEG scanning**

• Surgically **implanted** with **2x 96-channel arrays** (4x4mm) in **M1** and **2x** 60-channel arrays (2x4mm) in S1

Post-implant intracortical microstimulation surveys for each channel

Using **neuroimaging** to **predict** the **functional territories** of the **body**

How effective is neuroimaging for targeting sensory finger territories?

3 Finger mapping with fMRI and MEG

Takeaways 6

• Despite spinal cord injuries, finger S1 maps could be captured for all participants • Neuroimaging is an effective predictor of targeting distinct sensory finger territories (average 60%) • The **anatomical hand knob** is a **poor predictor** of sensory finger territories

¹University of Pittsburgh; ²University of Chicago; ³Phoenix Children's Hospital; ⁴Carnegie Mellon University

