
 

Signal properties and stability of a chronically implanted 
endovascular brain computer interface  
 
Nikole Chetty1, Kriti Kacker1, Ariel K Feldman2,3, Peter E Yoo4,5, James Bennett4,5, Adam Fry4,5,6, Idan Tal5, 
Nicholas F Hardy5, Sadegh Ebrahimi5, Cesar Echavarria5, Abbey Sawyer6, Hunter R Schone7,8, Noam Y 
Harel6,9,10, Raul G Nogueira11, Shahram Majidi12, Elad I Levy13, Amit Kandel14, Katharine (Katya) Hill15,16, 
Nicholas L Opie4,5, David Lacomis17, Jennifer L Collinger7,8,18,19, Thomas J Oxley4,5, David F Putrino6, 
Douglas J Weber*1,2 

1.​ Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA  
2.​ The Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA 
3.​ Center for Neural Basis of Cognition, Pittsburgh, PA, USA 
4.​ Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia 
5.​ Synchron Inc., NY, USA 
6.​ Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA States 
7.​ Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA 
8.​ Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA 
9.​ Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
10.​ James J. Peters VA Medical Center, Bronx, NY, USA 
11.​ Department of Neurology and Neurosurgery, University of Pittsburgh Medical Center, Stroke Institute, Pittsburgh, Pennsylvania 
12.​ Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
13.​ Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA 
14.​ Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA 
15.​ School of Health and Rehabilitation Sciences, University of Pittsburgh, PA, USA 
16.​ Morosky College of Health Professions and Sciences, Gannon University, Erie, PA, USA 
17.​ Departments of Neurology and Pathology (Neuropathology), University of Pittsburgh School of Medicine, Pittsburgh, PA 
18.​ Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA   
19.​ Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA 

        *Correspondence to Douglas Weber at dougweber@cmu.edu 

 
Abstract 
Background: Implanted brain-computer interfaces (iBCIs) establish direct communication with the brain 
and hold the potential to enable people with severe disability to achieve control of digital devices, enabling 
communication and digital activities of daily living. The ability to access brain signals reliably and 
continuously over many years post-implantation is crucial for iBCIs to be effective and feasible.  This 
study investigates the signal characteristics and long-term stability of neural activity recorded with a 
stent-electrode array over 1 year post-implant.  

Methods: We report on five participants with paralysis who were enrolled in an early feasibility clinical trial 
of an endovascular iBCI (Stentrode; ClinicalTrials.gov, NCT05035823). Each participant was implanted 
with a 16-channel stent-electrode array, deployed in the superior sagittal sinus to record bilaterally from 
the primary motor cortices. Neural activity was recorded during home-based sessions while the 
participants performed a set of standardized tasks. Metrics including motor signal strength during 
attempted movement, resting state signal features, and electrode impedances were quantified over time.  

Results: Motor-related modulation in neural activity was exhibited in the high-frequency bands (30-200 
Hz) during attempted movements, with rest and attempted movement states showing sustained 
differentiation over time. Impedance and resting state band power for most channels did not change 
significantly over time.  

Conclusions: These findings provide strong evidence that the endovascular BCIs may be suitable for 
long-term neural signal acquisition in the home environment, demonstrating the ability to record 
movement-related modulation over one year.  
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Introduction 
Implanted brain-computer interfaces (iBCIs) hold great promise for restoring communication and digital 
device control for people with profound paralysis due to trauma or disease1. By measuring electrical 
activity generated by neurons in motor areas of the brain, especially the motor cortex, BCIs form a conduit 
for expressing motor intentions, goals, and needs2. For people with severe disability, an iBCI may serve 
as the only option for personal expression, enabling control of a cursor for spelling3 and even 
communication via artificial speech synthesis4.  

iBCI systems that are under development use a variety of interface technologies to measure neural 
activity in the brain, with each approach and implantation site offering trade-offs including signal fidelity, 
spatial resolution, long-term stability, and surgical risk. Intracortical microelectrode arrays (MEAs) offer the 
unique ability to detect action potentials from individual neurons, as well as local field potentials. However, 
intracortical MEAs require a craniotomy and dural resection, which pose a small, but non-zero risk of 
infection and tissue damage and may be susceptible to material degradation5,6. Furthermore, spike-based 
iBCIs typically require frequent recalibration or decoder updates, such as manifold alignment, to 
overcome signal instability7. Nonetheless, MEAs give access to rich movement-related information and 
have enabled several notable human iBCI milestones, including computer control, robotic arm control, 
and speech decoding8–11.  

Electrocorticography (ECoG) is another iBCI technology that uses arrays of non-penetrating 
microelectrodes placed above or below the dura to record field potentials. ECoG-based iBCIs typically 
utilize spectral features from the sensorimotor cortex during imagined or overt movement, including beta 
de-synchronization and, most notably, gamma synchronization which provides rich, focal information12–15. 
ECoG-based iBCI studies have demonstrated successful computer cursor control, speech decoding, and 
digital communication in people who are locked-in16–19. Nevertheless, the placement of ECoG electrodes 
necessitates a craniotomy, burr holes or slits, limiting its use to specific clinical scenarios. 

Endovascular electrode arrays are a newer type of iBCI recording array that can be delivered via catheter 
introduced in the jugular vein, thereby offering a minimally invasive alternative to the aforementioned 
iBCIs. Endovascular electrode arrays can be implanted in the cerebral venous system adjacent to cortical 
targets, e.g. the superior sagittal sinus adjacent to the medial wall of primary motor cortex of both 
hemispheres of the brain. This approach enables neural signal recording from within the blood vessel wall 
without directly penetrating brain tissue. A first-in-human clinical trial of stent-electrode array based iBCI 
demonstrated safe implantation and successful decoding in four individuals with severe bilateral 
upper-limb paralysis20,21. However, given that endovascular electrode arrays were developed relatively 
recently, there are limited reports on the spectral features and long-term signal quality of these vascular 
ECoG (vECoG) signals. For any iBCI to be viable for long-term use, signals must remain stable over time 
to enable decoding of user intent. Multiple factors could contribute to signal instability and/or loss of iBCI 
functionality in people with amyotrophic lateral sclerosis (ALS), including neuronal degeneration and 
cortical atrophy, cognitive decline, biological response, and device-related failures. Here, we report on the 
signal properties and long-term stability of vECoG recordings from five participants implanted with a 
stent-electrode array as a part of the COMMAND Early Feasibility Study (NCT05035823).  
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Results  

Six participants underwent implantation of a stent-electrode array (Stentrode), which was delivered 
endovascularly via catheter to a target location in the superior sagittal sinus adjacent to motor cortex (Fig. 
1, Table 1). To investigate the stability of these signals over time, we analyzed three key metrics: motor 
signal strength during attempted movement, resting state signal features, and electrode impedances 
across the duration of each participant's involvement in the study, up to 12 months. The data presented 
here comprises a subset of the total dataset acquired during the early feasibility study and was analyzed 
independently in an exploratory analysis to evaluate signal properties and stability. A separate manuscript 
will report clinical outcomes and safety data. 

 

Table 1 | Participant demographics  

Particip
ant ID 

Gender Age 
Range 
(years) 

Diagnosis Time since 
diagnosis  

(years) 

Clinical Manifestations  Data 
Follow-up 
(months) 

Data Analysis 
Scope 

1 M 66 - 70 ALS 11 Severe paralysis, tracheostomy, 
ventilator dependent, anarthria 

6 

 
Full 

2 M 71 - 75 ALS 5 Severe paralysis, tracheostomy, 
ventilator dependent, anarthria 

12 Full 

3 M 51 - 55 ALS 3 Severe paralysis, tracheostomy, 
ventilator dependent, anarthria 

6 Partial - Resting state 
& impedance 
analysis only 

5 F 51 - 55 ALS 6 Paralysis, supplemental oxygen, 
anarthria  

12 Full 

6 M 61 - 65 ALS 3 Upper limb paralysis, ambulatory, 
normal speech 

12 Full 

ALS: Amyotrophic lateral sclerosis 
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Fig. 1: BCI setup and device location.  

a, Schematic of the click-based brain-computer interface (BCI). Neural activity of the participant 
attempting to move was recorded from the implanted stent-electrode array and transmitted to a computer 
for decoding and computer control. b, Left: Stent-electrode array with 16 recording electrodes embedded 
on a stent. Middle: Example CT showing the post-implant location of the stent-electrode array (green 
arrow) in the superior sagittal sinus adjacent to motor cortex. Right: Sagittal plane showing the 
stent-electrode array (green arrow) is deployed in the superior sagittal sinus (blue), adjacent to motor 
cortex. c, Components of the fully implanted BCI system. The lead connects to the internal receiver 
transmitter unit (IRTU) in the subcutaneous, subclavicular pocket. The IRTU communicates with an 
external receiver telemetry unit (ERTU), which relays the signals to a signal control unit and then a laptop. 
Parts of this figure were created with BioRender.com. 

 

Attempted movement modulates endovascular neural signals 

An example single-channel broadband and band-limited signal, along with the corresponding spectrogram 
and PSD (across all trials), is shown during attempted movement of both ankles (Fig. 2a). Following the 
movement cue, synchronization is observed in the low and high gamma bands compared to rest. As 
expected and consistent with other recording modalities, the power spectrum follows a 1/f relationship, 
with power decreasing as frequency increases.  

Figure 2 illustrates examples of attempted movement modulation, with formal quantification of modulation 
strength provided in subsequent analyses. Mean spectrograms from a representative channel from each 
participant illustrate the variability in signal modulation following the move cue (Fig. 2b). The 
spectrograms show the mean across 30 trials of attempted movement, aligned to the go cue and z-scored 
relative to the rest period of each frequency bin (2 seconds preceding the go cue). Mean spectrograms 
from a single channel over time demonstrate the consistency of spectral responses over the course of the 
study (Fig. 2c). Mean spectrograms across the array show similar time-frequency modulation on multiple 
channels during attempted movement of both ankles for P2 (Fig. 2d).  
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Each participant was tested on their ability to use the BCI to generate binary command signals, akin to a 
mouse-click. Participants asserted a click command by attempting to move their ankles or hands; the 
specific gesture for each participant was selected based on a combination of neural modulation feedback, 
participant preference, and intuitiveness. For P1, the primary gesture was both ankles, which consisted of 
attempted plantar flexion of the ankle, described as pressing down on a gas pedal. For P5 and P6, the 
primary gesture was right hand (finger flexion of all digits on the right hand), described as attempting to 
make a fist. P2 used both ankles for the first 8 months and then switched to the right hand.   
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Fig. 2: Signal modulation during attempted movement.  
a, The broadband signal from one electrode (top) is shown alongside its corresponding band-limited 
signals (middle) and spectrogram (bottom) while the participant is being cued to move. The black dashed 
line indicates the time when the participant was visually cued to move, while the gray dashed line marks 
when movement was decoded. Right: Power spectral density (PSD) comparing move and rest conditions, 
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highlighting frequency-specific differences in neural activity, especially in the low gamma and high gamma 
ranges. Solid line represents the mean across trials; shaded regions show the 95% confidence interval of 
the mean. b, Example channel spectrograms at 3-months post-implant for the four participants, showing 
the trial-averaged time-frequency responses following the visual move cue (indicated by the black dashed 
line). Red indicates synchronization from rest, while blue indicates de-synchronization. c, Spectrograms 
from the same channel across three time points (3, 6, and 12 months) while the participant attempted 
right hand movement following the visual move cue (indicated by the black dashed line), demonstrating 
the similarity of the control signal over time. d, Spectrograms from all active channels across the array.  

 

Modulation during attempt movement is stable over time 

To evaluate motor signal strength, we measured the Euclidean distance between ‘rest’ and ‘move’ band 
power in the beta, gamma, and high gamma frequency bands across all channels. This metric quantifies 
the separation between rest and movement-related neural states, providing insight into the amplitude and 
stability of task-related neural signal modulation over time. Signals were band-limited, the envelope 
extracted and smoothed with a 100 ms window, and RMS amplitudes for each channel were computed 
within rest and movement epochs. Fig. 3a shows examples of the high-gamma motor signal modulation 
for two channels. The cross-validated Euclidean distance measures the distance between the centroids of 
the clusters formed in the N-dimensional space formed by the N number of active channels in the 
stent-electrode array. The mean distance across participants for the beta, low gamma, and high gamma 
bands was 5.6, 5.8, and 10.9 standard deviations from rest (Fig. 3b). Across all participants, the 
percentage of sessions exhibiting statistically significant Euclidean distance was 40.33 ± 39.32%, 66.51 ± 
22.53%, and 89.32 ± 15.28% for the beta, low gamma, and high gamma bands, respectively. Many 
factors may contribute to the small magnitude of some observed values. First, the band power metric is 
not derived directly from the features utilized for decoding, meaning that participants may not be 
optimizing or learning to modulate these specific features (particularly the beta band). Second, the signal 
often peaked after the decode window (Fig. 3a), underscoring that this metric captures the distance at the 
time of decoding rather than at the peak neural response. Third, participants may adopt a strategy of 
'greedily minimizing effort’,22 where they adjust their movements to use the minimum effort possible to 
produce a decoded click. Consistent with this, P6 exhibited a significant decline in high gamma 
modulation without a corresponding decrease in online accuracy, likely because he learned that such high 
levels of “effort” were not necessary to elicit a click. Although this adaptive behavior and plateau may be 
better captured by an exponential decay, a linear fit was utilized in all cases for simplicity and consistency.  

With a few exceptions, most participants and bands did not exhibit a significant change over time in the 
Euclidean distance motor signal modulation metric. All participants reported here had ALS, a progressive 
neurodegenerative condition that may have contributed to observed decreases in attempted movement 
modulation, regardless of statistical significance. There was a significant decrease in the low gamma 
band for P2 with both ankles (p<0.01), however, there were no significant changes for any of the bands 
for P2 after they switched to the right hand. Additionally, P1 and P6 showed a significant increase in the 
beta band (p<0.05). These increases were accompanied by decreases in false positive rates and latency, 
and such changes may reflect learning and task familiarity.  
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Fig. 3: Amplitude and stability of motor signal modulation over time.  

a, Example smoothed envelopes for two channels of high gamma modulation during the command control 
task (left) (shown for Participant 2 with attempted movement of both ankles at 3 months post-implant). 
The shaded regions indicate the epochs used to compute the RMS for both attempted movement (purple) 
and rest (gray). On the right is an example 2D visualization of the move and rest clusters, formed from the 
two example channels on the left, from which Euclidean distance was calculated. Each scatter point is the 
RMS of the envelope from a single rest or move attempt. Shaded ellipse shows the covariance and X 
marks the centroid. The cross-validated Euclidean distance is computed as the distance between the rest 
and move condition vectors formed in an N-dimensional space, where N number of active channels in the 
stent-electrode array. b, Cross-validated Euclidean distance across participant and frequency bands, with 
linear fits. Zero (dashed black line) represents no mean change from rest (overlapping rest and move 
clusters). Shading represents a 95% confidence interval of the slope. The small gray upward arrow 
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indicates where P2 transitioned between using both ankles to right hand as their primary control gesture. 
For visualization, Euclidean distances greater than 25 were clipped (dashed gray line), with the original 
value displayed above the corresponding scatter point. Scatter points with an outline are significantly 
different from zero (permutation test, p < 0.05). Scatter points with a black ring were identified as high 
influence points and not included in the linear regression. A total of 10 samples were flagged as high 
leverage, corresponding to a mean of 1.1 samples per participant × band. Linear fits with solid lines have 
non-zero slope (Wald test, p < 0.05). n.s., not significant and sig, significant.  

 

Relationship between online performance and neural modulation strength 

Performance in the online command-control task was consistently high across participants (Fig. 4). For 
three participants, accuracy showed a modest increase over the follow-up (up to 6.0%/year), although the 
change was not statistically significant for any participant.  

Next, we examined the relationship between online accuracy and modulation strength quantified with 
Euclidean distance. Across participants and bands, generally the accuracy increased as modulation 
strength increased.  

 

 

9 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2025. ; https://doi.org/10.1101/2025.09.19.25335897doi: medRxiv preprint 

https://doi.org/10.1101/2025.09.19.25335897
http://creativecommons.org/licenses/by/4.0/


 

 

Fig. 4: Relationship between online performance and neural modulation strength 

a, Online accuracy over time with linear fits. Linear fits with solid lines have a significant slope (Wald test, 
p < 0.05). n.s., not significant and sig, significant. Shading represents a 95% confidence interval of the 
slope. Right hand movements are represented by diamonds, and both ankles by circles. The small gray 
upward arrow indicates where P2 transitioned between using both ankles to right hand as their primary 
control gesture. b, Online performance (accuracy) is plotted against movement modulation strength, 
measured as the cross-validated Euclidean distance between rest and move clusters, which was 
measured for each frequency band. The relationship was modeled with a saturating exponential function (

). Each scatter point represents a single session, with darker points indicating longer time post 1 −  𝑎𝑒𝑏𝑥

implant. The x-axis was limited to 40 for visualization purposes.  

10 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2025. ; https://doi.org/10.1101/2025.09.19.25335897doi: medRxiv preprint 

https://doi.org/10.1101/2025.09.19.25335897
http://creativecommons.org/licenses/by/4.0/


 

 

Resting state spectral features are stable over one year 

To assess the stability of resting state signal features over time, 2-minute resting baseline recordings 
were made at the beginning of each home session. The mean band power in six canonical frequency 
bands was calculated for all channels. Examples of broadband resting state signals for a single channel 
and their corresponding PSD for P2 is shown in Fig. 5a. To assess changes in baseline band power over 
time, each channel (for all participants) was fitted with a linear regression to quantify the slope and 
determine its statistical significance. The number of channels exhibiting significant slope varied across 
frequency bands (range 4–52%), with higher-frequency bands generally showing a greater proportion of 
channels with no significant change over time (Fig. 5c). The overall distribution of slopes for all bands was 
centered or near zero, with higher frequency bands exhibiting tighter distributions around zero (Fig. 5c).  

In general, band power remained stable over time, with a large proportion of channels exhibiting no 
change in band power over the year following implant. Of those that have a significant slope, the average 
slope ranged (depending on frequency band) from 0.007 to 0.042 (dB/Hz)/day for increasing channels 
and -0.0035 to -0.012 (dB/Hz)/day for decreasing channels, representing small changes per day.  
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Fig. 5: Stability of resting state signal features over time.  

a, Short recordings of broadband signals (2 min) were acquired while the participant was resting at the 
start of every training session. Top: Example resting-state broadband (high-passed at 1 Hz) signals for a 
selected electrode over the course of a year (from participant 2); bottom: Welch's power spectral density 
(PSD) estimates of the corresponding resting state recordings. Diagram of example electrode location on 
the stent array. b, Mean (± standard error of the mean) band power across channels over the course of a 
year with linear fits to each frequency band (example from participant 2). The purple arrows correspond to 
the days shown in panel a. c, The band power over time for all channels across participants (P1, P2, P3, 
P5, P6) were modeled individually with linear fits. The distribution of slopes are estimated with a gaussian 
kernel density estimate. The pie charts show the number of channels that are significantly changing over 
time (Wald test, p < 0.05) and if they are, if the slope is positive (increasing) or negative (decreasing) as 
indicated by arrows. ns, non-significant. 
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Electrode impedances are stable throughout the testing period 

To monitor the electrode-tissue interface over time, in-situ impedance measurements were recorded at 
the start of each home session. Across all participants, 11 of 64 electrodes were excluded by visual 
inspection or due to high impedance (>100 kΩ), leaving on average 10.6 active channels per participant 
(Extended Data Table 1). The mean impedance across all channels and all participants was 30.7 ± 15.8 
kΩ, with a mean difference of 12.1 ± 12.7 kΩ from the reference electrode (Fig. 6, Extended Data Table 
1). Among electrodes with impedances below 100 kΩ, 45% remained stable over time (Wald test, 
p>0.05), while 25% exhibited a significant increase and 30% showed a significant decrease. Among 
electrodes with increasing or decreasing impedance, the mean slope was 0.049 and -0.020 kΩ/day, 
respectively. Thus, even for electrodes that exhibited changes over time, the overall rate of change 
remained low. These stable impedance recordings over time suggest consistent electrode-tissue contact, 
minimal tissue response, and a stable recording environment, indicating long-term reliability of the 
implant. 

 

 

Fig. 6: Impedances over time.  

a, On the left, example impedances for all electrodes plotted against days since implantation (for P2), with 
each electrode represented by color. Solid lines show the fit linear regression to each electrode. On the 
right, each electrode is summarized by a scatter point (with error bars) showing the mean impedance (std 
deviation) and slope (standard error of the estimated slope) from the linear regression fit. b, All electrodes 
for across the 5 participants (indicated by color for P1, P2, P3, P5, and P6) showing the mean (std 
deviation) and slope (standard error of the estimated slope) and zoomed in section showing the large 
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cluster around 0 Ω/day and 20 to 40 kΩ (middle). Filled markers indicated electrodes with insignificant 
change in impedance over time (Wald test, p < 0.05) while unfilled markers indicated significant change. 
Electrodes with high impedance (mean greater than 100 kΩ) are marked with squares, the remaining 
electrodes are marked with circles. Pie chart illustrating the distribution of electrodes based on the 
significance and sign of the slope from the linear regression fit of impedances over time (for electrodes 
with low impedance). n.s. non-significant. 

 

Exploratory analysis of gesture discriminability for multi-switch control 

Clear visual modulation of high gamma was observed during various cued attempted movements, relative 
to rest. Representative single trial and trial-averaged high-gamma envelopes are shown for P1 (Fig. 7a). 
While the magnitude of the responses varied across electrodes, the mean temporal profiles were similar 
across electrodes and gestures (Fig. 7a). 

With the goal of identifying a subset of gestures that could be used for multi-class decoding (ex: two 
distinct switches), we analyzed data from a battery of gestures collected offline without feedback. Such 
multi-switch control supports functions such as left and right mouse clicks, which enables faster and more 
complex control of digital devices. Gesture discriminability was visualized using LDA with features pooled 
from beta, low gamma, and high gamma band power. The first two LDA dimensions, illustrating 
gesture-specific clusters are shown for each participant (Fig. 7b). The distance between clusters was 
quantified with cross-validated Euclidean distance (Fig. 7b). This exploratory analysis aimed to identify a 
subset of gestures that were both well separated from rest and from each other. For example, in P1, the 
right hand and left ankle signals show separability and may be a viable candidate for multi-click control. 
While these preliminary results are promising, further validation including real-time multi-gesture decoding 
is necessary to confirm these results. Furthermore, due to limited multi-class data, this exploratory 
analysis was restricted to three participants (P1, P2, and P6). This exploratory analysis on gesture 
discriminability was performed offline without feedback and thus is likely a conservative minimum for 
separability. With real-time neuro-feedback training and repeated practice, the neural responses may 
strengthen and become more distinct.   
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Fig. 7: Exploration of multi-gesture discriminability.  

a, Top: Examples of smoothed high gamma envelopes when cued to perform a specific gesture, showing 
representative single trials. Each gesture is represented by a different color. Bottom: Each line shows the 
mean envelope across many attempts of the same gesture with shaded regions showing the 95% 
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confidence interval of the mean (example shown for P1). Right: Same as the last panel but showing all 
active channels laid out spatially on the stent array. b, Top: The feature vector including beta, low gamma, 
and high gamma RMS for each movement projected into 2D space with LDA. Shaded ellipse shows the 
covariance and X marks the centroid. The distribution for each class is visualized using gaussian kernel 
density estimates along both dimensions. Bottom: The cross-validated Euclidean distance between each 
possible movement pair. Distances exceeding 5 were capped to improve visualization. A dot in the middle 
indicates the 95% confidence interval does not include 0, indicating the distance between cluster means 
is significantly greater than 0. RMS, root mean square; LDA, linear discriminant analysis 

 

Referencing scheme influences artifact presence 

Data was obtained using one of two hardware reference schemes: (1) all channels referenced to a single 
selected electrode on the body of the stent or (2) all channels referenced to an electrode in the chest on 
the body of the IRTU in the subcutaneous pocket (Extended Data Fig. 1 a & b). When using the stent as a 
reference, one of the active electrodes was effectively lost due to the referencing scheme. However, this 
approach significantly reduced common-mode noise, particularly electrocardiogram (ECG) artifacts. 
Despite this reduction, residual ECG artifacts remained in some electrodes, as indicated by regularly 
occurring R peaks or T waves (Extended Data Fig. 1e). On average, across participants, 3.2 channels 
exhibited moderate or greater residual ECG artifacts. Importantly, ECG contamination was generally low 
frequency, predominantly below 40 Hz23, and did not substantially affect higher-frequency signals, 
particularly gamma, which were those used for decoding. Consequently, given the use of the local 
reference, it was not a major concern and was not further addressed. To visually demonstrate the 
reduction of the ECG artifact, the stent reference can be approximated by software re-referencing the 
IRTU referenced data through subtraction of a single channel (Extended Data Fig. 1c). For all reported 
online control results, the on-stent local reference was used. For baseline analyses, signals were also 
obtained using the local reference; in the rare case where an IRTU reference was used, the data was 
software re-referenced to a local channel.  

Occasionally, other artifacts were noted, such as line noise which was easily identified by narrow peaks in 
the PSD at 60, 120, and 180 Hz (Extended Data Fig. 1e). Moderate line noise contamination, defined as 
an average peak prominence exceeding 5 dB, was observed in 31.3% (±5.3%) of sessions across 
participants. Notably, line noise contamination affected all channels similarly, with sessions either showing 
uniformly high or low 60 Hz prominence across channels. Since recordings were conducted in the home 
environment, we suspect that session-to-session variability in line noise was driven by changes in the 
surrounding electronics, such as televisions, space heaters, eye trackers, or variations in proximity to 
power outlets. Frequency bands were defined to exclude 60 Hz, but no further filtering or removal 
methods were applied as line noise was generally minimal.  
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Discussion 
Here we report on signal characteristics and present evidence of long-term stability of neural signals 
recorded endovascularly for motor-based iBCI control. Data was collected from participants with severe 
paralysis enrolled in a clinical trial evaluating an endovascular-based iBCI. We report signal 
characteristics over 1 year for three participants and 6 months for two participants. vECoG signal stability 
was assessed with a variety of metrics, including motor signal modulation, resting state signal features, 
and impedances. All data was collected in the participants' homes, where real-world noise and 
disturbances pose greater challenges than a controlled laboratory setting, highlighting the robustness of 
the recorded signal under natural conditions. This study demonstrates the potential for endovascular 
iBCIs to reliably detect stable neural signals, which is necessary to enable at-home iBCI driven digital 
device control.  

Long-term stability of implanted brain-computer interfaces 

Users of implanted BCIs should expect the devices to operate reliably for as long as they need them, 
perhaps several years. Aside from device related failures, a variety of biological factors may diminish BCI 
performance, including tissue reactions and neuronal loss. Preclinical studies have shown that 
endovascular arrays and leads become integrated into the vessel through endothelial encapsulation, with 
the struts moving deeper into the vessel wall over the first few days to weeks24, 25. Prior stenting literature 
reports that full endothelization occurs between 4 to 6.5 weeks20,26. Over this period, prior work 
demonstrates improved recording sensitivity, evidenced by better detectability of somatosensory evoked 
potentials24. In contrast, subdural ECoG arrays become encapsulated in fibrotic connective tissue 
following implantation,27 which can increase the distance between the cortex and the recording 
electrodes, potentially attenuating signal amplitude28–30. In either case, whether fibrous encapsulation or 
endothelialization, it is expected that the first few days following implantation will exhibit the most rapid 
changes in the electrode-interface and recorded signals. However, in this study, data collection began 6 to 
8 weeks after implant to allow resolution of local bruising and swelling at the site of the subcutaneous 
IRTU. Therefore, we cannot assess the signal quality changes, but other neural interfaces have shown 
rapid changes in the acute postoperative period24,30,31. In chronic human BCI studies, ECoG electrodes 
have shown fluctuations in impedance over the first 1 to 6 months post implantation before 
stabilizing30,32–34. In this study, we did not observe large fluctuations in impedance from 2 to 12 months 
post implant. Overall, the largest proportion (45%) of electrodes did not change impedance significantly, 
and of those that did, the median change was -0.03% to 0.05% per day from the channel's mean 
impedance. These small changes are consistent with other reports on in-situ impedance changes after 
implant32,33,35.  

RMS voltage or band power during rest are commonly used metrics to assess long-term signal stability. 
There is growing evidence to support that ECoG-based recordings exhibit stable band power in chronic 
implants in humans32,33,36,37. In our study across 1 year, we found a mix of changes in power across all 
bands, with a large proportion of channels unchanged, some channels increasing, and some decreasing. 
However, even when changes were detected as statistically significant, the actual changes were relatively 
small, ranging from -0.012 to 0.042 (dB/Hz)/day. For comparison, previous studies have reported modest 
and variable changes in band power over time, including early postoperative changes followed by small 
increases or decreases depending on the individual and study32,36–38. Overall, the power changes 
observed in this study are consistent with prior reports on chronic ECoG implants in humans, which 
similarly describe only minor fluctuations over time. Overall, the long-term recordings in this study 
demonstrate that stent-electrode arrays can record stable signals for at least 1 year. Importantly for 
long-term control, the stable rest state recordings suggest no significant underlying changes in the 
population neural dynamics that would necessitate recalibration or other intervention. 
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Detecting motor intent: gamma synchronization 

Consistent with earlier literature, gamma and high gamma signals showed clear synchronization during 
attempted movement. Several ECoG studies have shown increased gamma-band power during executed 
movements, attempted movements, and motor imagery12,15,16,19,35,39–44 and has supported many BCI 
applications including decoding of movement trajectories 39,40, movement onset and offset44, and multiple 
independent control signals35,40. Here, we observe strong movement related gamma synchronization, 
reaching on average 10.9 standard deviations above rest, demonstrating that high frequency motor 
signals can be recorded from within the vasculature. Despite this unique location and electrode 
geometry–nestled in the endothelium and surrounded by dura–we found that the motor-related features of 
the vECoG signals are similar to those reported for subdural ECoG grids placed on the cortical surface. 
By recording intracranially through the vascular system, this approach bypasses the filtering effects of the 
skull and scalp, enabling the reliable measurement of high-frequency features that are attenuated and 
difficult to resolve without trial averaging on scalp electroencephalography (EEG) recordings. 

Furthermore, our results are consistent with previous observations of retained gamma-band modulation in 
people with ALS, including those with advanced paralysis19,45–47. The reliable decoding of gamma 
synchronization with this sample supports the potential utility of vECoG BCIs as a motor neuroprosthesis 
for long-term communication and digital device control.  

One of the primary advantages of gamma band signals is their spatial specificity. These spatially specific 
activation maps have demonstrated successful decoding of multiple degrees of freedom, such as 
decoding multiple complex hand gestures,35,48,49 bimanual exoskeleton control,50 and two-dimensional 
cursor control40. Here, we analyzed six gestures to evaluate the potential for multiple distinct switches and 
found a subset of gestures that were separable, which is consistent with prior studies reporting successful 
classification of multiple movement types using high-frequency spectral features35,49,51. Despite 
methodological differences, our findings support the broader conclusion that gesture-specific neural 
activity is distinguishable with vECoG. By prioritizing a small set of gestures for multi-switch control rather 
than maximizing the number of classes, this approach addresses the clinical need for robust control in 
users with severe disability. In comparison, the information captured with vECoG is likely less complex 
than that recorded with intracortical MEAs, which have enabled fine-grained motor decoding with high 
accuracy, such as tracking individual finger trajectories9,52. In contrast, the vECoG records 
population-level field potentials, which may limit resolution but affords long-term stability.  Nonetheless, 
these results suggest that two or more gestures could serve as discrete switches for clinical vECoG BCI 
applications, such as assistive device control.  

In many participants, the gestures identified for potential multi-switch control included hand movement. 
Given the position of the stent-electrode array within the superior sagittal sinus near the paracentral 
lobule, which classically controls lower limb movement, it is anticipated that motor attempts involving the 
lower limbs would generate the strongest signals. However, we found strong representations of both 
ankle and hand movement (Fig. 7b). This may reflect factors such as proximity to the supplementary 
motor area (SMA) or mixed effector regions throughout motor cortex53,54.   

Detecting motor intent: beta desynchronization 

Beta desynchronization, typically observed as a reduction in beta-band power (13–30 Hz) during 
movement or motor imagery, is a well-established neural correlate of motor intention13,42. In our cohort of 
participants, we reliably saw movement related gamma synchronization in 4 out of 5 participants, while 
beta modulation was seen only in 2 out of 5 participants. This may have been due to 1) close referencing 
channel and/or 2) ALS disease progression. Firstly, the detection of beta desynchronization was more 
sensitive to the type of referencing scheme, which included a remote reference in the chest or a local 
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reference channel on the stent-electrode array. In this study, the local reference scheme was preferred, 
because it provided greater attenuation of common mode noise sources, especially electrocardiogram 
artifacts. However, the close proximity of the local reference and recording electrodes may have resulted 
in stronger attenuation of beta band signals, which tend to exhibit high degrees of correlation across 
electrodes spaced 2-4 mm apart55. On the other hand, difficulty detecting beta band modulation may also 
reflect ALS disease progression. A previous report on a person with locked-in syndrome due to ALS 
demonstrated variable and weak decreases in low-frequency band activity during attempted movement, 
even in electrodes showing the highest gamma response46. Scalp EEG studies have similarly reported 
that ALS patients have significantly smaller magnitude event related desynchronization during motor 
imagery than age-matched controls56. Furthermore, in ALS patients, the severity of bulbar impairment was 
correlated with smaller event related desynchronization56. Further, the majority of our participants were 
non-verbal, ventilator dependent, and reliant on percutaneous endoscopic gastrostomy (PEG) for 
nutrition, indicating severe bulbar impairment, which may explain the weak beta modulation. These 
findings suggest that while beta desynchronization is a commonly reported response during motor 
attempt, it is not universally present in all individuals or under all recording schemes. 

Study limitations 

Although the initial follow-up reported here is 6-12 months, it is imperative to conduct ongoing 
assessments over several years to confirm neural signal stability and reliability. There are open questions 
about how ALS related cortical degeneration of motor neurons affects BCI device usability45. Additionally, 
all reported participants had ALS, therefore more data is needed to assess if there are etiology-specific 
differences.  
 
Here we present data on the characteristics and longevity of signals recorded from endovascular 
stent-electrode arrays, which is one of many factors that will shape usability and long-term success of 
iBCIs. A significant limitation of this paper is the absence of clinical outcomes, including adverse events, 
which will be addressed in other publications. Specifically, ensuring that the rates of device migration, 
thrombosis, intracranial hemorrhage, stenosis, and infection are acceptably low for the provided benefit 
remains essential.  

Conclusion  

The data presented herein demonstrates stable neural signals recorded with an endovascular BCI in 
three participants over a year and two participants over six months of follow up. This long-term stability is 
a critical foundation for enabling reliable, independent, at-home digital device control. As the technology 
continues to evolve, ongoing evaluation of the signal properties and longevity will be essential to support 
scientific understanding.  
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Methods  

Clinical Trial and Device 

The data presented here were recorded as part of an early feasibility clinical trial to obtain preliminary 
evidence of the safety and efficacy of an endovascular BCI for digital device control and communication in 
people with severe paralysis (ClinicalTrials.gov: NCT05035823, WCG IRB: 1347924, Investigational 
Device Exemption: G210178). For all participants, severe upper limb motor impairment or paralysis 
prevented physical interaction with a personal computer, leading to either complete non-use or reliance 
on adaptive or augmented control methods.  
 
The deployment of the stent-electrode array into the superior sagittal sinus via a catheter guided by 
angiography has been described previously20,21. The stent-electrode array (Stentrode, Synchron, NY, 
USA) consists of sixteen platinum electrodes embedded on a nitinol stent scaffold connected to a flexible 
lead, which is tunneled to an internal receiver telemetry unit (IRTU) placed in a subcutaneous pocket 
below the clavicle (Fig. 1). Data was transmitted to an external computer by placing an external receiver 
telemetry unit (ERTU) on the skin, allowing wireless infrared communication to the IRTU. Biopotential 
measurements on each electrode were referenced to a common electrode, which was located either at 
the IRTU or 1 of the 16 electrodes on the stent-electrode array. The sampling rate was 2,000 Hz per 
channel.  

Data Collection Sessions  

User training and testing with the BCI began after all bruising around the chest pocket had resolved and 
infrared communication could be established, approximately 6-8 weeks after implantation (mean 7.2 ± 1.2 
weeks). In-home sessions occurred approximately twice weekly, typically lasting 2-3 hours or as long as 
the participant felt comfortable. Sessions were not completed during some weeks due to personal breaks 
(e.g. holidays), health-related issues unrelated to the study, or wound healing. This paper analyzes 
session data up to 12 months post-implant, with two participants (P1 and P3) having shorter follow-ups.  

Sessions were conducted at the participants home with a field engineer present. The engineer completed 
the system setup, which consisted of placing the ERTU over the skin above the IRTU and turning on the 
computer, and to explain new tasks and answer any questions. None of the participants had previous BCI 
experience. Tasks progressed in difficulty as the participant demonstrated proficiency, although here we 
only examine a subset of tasks to evaluate signal properties and stability.  

Baseline Evaluation 

A baseline recording was taken at the beginning of every training session. The baseline task consisted of 
a two-minute recording with the participant resting with their eyes open and gazing at a fixation cross or 
circle on the computer screen in front of them. These recordings were utilized to analyze the resting state 
signal characteristics over time. In the few cases where the IRTU reference was used, the data was 
re-referenced in software to the participant’s standard local reference channel before further analysis.  
 
Additionally, at the beginning of every home training session, impedance measurements were taken by 
applying a sinusoidal pulse (100 Hz, 10 nA) to each electrode. Three short test pulses were applied and 
the average of the three was considered to be the impedance value. Only the magnitude and not the 
phase was recorded.  
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Pre-processing - Channel Selection and Artifact Handling 

Any unconnected channels (mean 3.2 channels unconnected, see Extended Data Table 1) were removed 
prior to analysis. Furthermore, electrodes with high impedance (> 100 kΩ) or appeared noisy on visual 
inspection were excluded from further analysis (mean 2.2 channels excluded, see Extended Data Table 
1), the remaining channels were designated as active channels.  

Artifacts were detected during offline data analysis if they exceeded eight standard deviations from the 
mean, with a 50 ms buffer applied to each side, using thresholds derived from the mean and standard 
deviation of the initial ten baseline recordings. This removed on average 0.33% of the baseline data (P1: 
0.41%, P2: 0.24%, P3: 0.09%, P5: 0.32%, P6: 0.61%). 

To assess the extent of line noise, sessions were evaluated based on the prominence of the 60 Hz peak 
in the power spectral density (PSD). Prominence was calculated for each channel and run by computing 
the difference between the peak power within the 59–61 Hz range and the average power across the 
adjacent frequency bands (50–58 Hz and 62–70 Hz). The resulting prominence values were then 
averaged across all channels, excluding the reference channel. To assess line noise prevalence, the 
percentage of baseline runs in which the average prominence exceeded 5 dB was computed. 

The presence of residual ECG was assessed by visually identifying channels with moderate residual ECG 
in baseline (resting state) recordings at 3, 6, and 12 months. A channel was marked as having residual 
ECG present if regularly occurring R or T waves were visually identified as being substantially larger than 
the background neural activity. 

Offline Analysis of BCI Performance - Motor Mapping Task  

In the early testing sessions, participants undertook a battery of attempted movement training tasks, 
termed motor mapping tasks. These tasks were visually prompted on a computer screen and consisted of 
10 trials of 5-s (± 1 s) rest periods where the participants focused on a fixation circle, followed by a 5-s 
period of movement attempt, in which 5 repetitions (1 Hz) of attempted movement occurred. The 
movements attempted included: both ankles, right ankle, left ankle, right hand, left hand, and both hands.  

Offline Analysis Metrics  

Signal features were assessed in the standard frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha 
(8-13 Hz), beta (13 to 30 Hz), low gamma (30 - 55 Hz), and high gamma (65 - 200 Hz)57,58. Filters were 
implemented with second order zero-lag Butterworth filters. The power spectral density was approximated 
with Welch’s method. Bandpower was calculated for each frequency band, defined in the frequency band 
from   as36: 𝑓
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Spectrograms and band-limited signal envelopes were used throughout to visualize the data. The 
spectrograms were calculated using signal.spectrogram (SciPy library). To facilitate the identification of 
task-related changes in the spectrograms, the power values were z-scored by normalizing them to the 
mean and standard deviation of the corresponding frequency bins during the rest period. Signal 
envelopes were extracted by calculating the analytic amplitude of the Hilbert-transformed band-limited 
signals. These envelopes were then smoothed using either a 100 ms or 250 ms moving average and 
further z-scored based on the mean and standard deviation of all rest periods on a given day.  
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To assess the strength of the movement modulation between rest and attempted movement, we 
quantified the distance between the band power across conditions. Distances between distributions of 
band power vectors (ex: rest and right ankle movement) were measured using cross-validated Euclidean 
distance as described in Willet et al 202053. This was done following the leave-one-out if the distributions 
had equal number of observations (ex: rest vs single movement) and splitting the data into folds when 
there were unequal observations (ex: rest compared to multiple gestures) where the number of folds were 
equal to the number of observations of the smallest class53. Pre-processing consisted of computing 
band-limited signal envelopes and smoothing with 100 ms moving average. Root mean square (RMS) 
vectors for rest and go epochs were computed and then z-scoring to the mean and standard deviation of 
the resting band power. For the rest period, RMS was calculated over the 200 milliseconds preceding the 
attempted movement cue onset. For the movement period, the RMS was computed from -100 to 100 
milliseconds around the movement decode, or at the end of the movement period if no decode occurred. 
To determine if the Euclidean distance between the rest and move distributions was significant, a 
one-sided permutation test was used.  
 
Assessing Long-term Stability  

To assess trends in features over time, linear regression was utilized to quantify changes in impedance, 
baseline band power, signal modulation, and online accuracy. The Wald test (Python SciPy) was used to 
determine whether regression slopes differed significantly from zero, thereby identifying channels/metrics 
with significant increases or decreases over time. Slopes that did not reach significance have insufficient 
evidence to conclude that they differ from zero. The specified metric was modeled as the dependent 
variable, while the days since implantation as the independent variable. To control for multiple 
comparisons, p-values were corrected using the Benjamini-Hochberg false discovery rate procedure. 
Corrections were applied separately within each participant across frequency bands and/or channels, 
depending on the analysis. Unless otherwise mentioned, p < 0.05 was used to determine significance.  

For signal modulation measured with Euclidean distance, some data points exhibited high influence. This 
was particularly prominent when early or late sessions showed very high signal modulation, which 
produced substantial slope changes in leave one out diagnostics. To manage this, individual runs were 
assessed for high influence using Cook’s distance computed from ordinary least squares models fitted for 
each participant and band. Observations were flagged as influential when exceeding a threshold of , 2/ 𝑛
where n is total runs for a given participant. Flagged observations were excluded from the linear 
regression used to estimate the trend but still included in the scatter plots for visualization to preserve 
data context.  

Offline Multi-gesture Evaluation  

To analyze differences in movements, offline motor mapping tasks across a variety of movements were 
analyzed. The attempted movements included: both ankles, right ankle, left ankle, right hand, left hand, 
and both hands. To minimize the risk of confounding factors related to session-specific variations, data 
from a single session with the highest number of gestures was analyzed. Since the comparison of 
multiple gestures was not a primary focus of the study, these runs were not conducted at regular intervals. 
To visualize the movement responses, the smoothed high gamma envelopes for various movements are 
shown.  

To evaluate the feasibility of multi-switch control using vECoG, we analyzed the separability of neural 
features across multiple gestures. Band power was calculated for the rest period by taking the 1 second 
prior to the attempted movement cue onset, and for the movement period, by taking the 1 second after 
the movement cue, shifted by 500 ms to account for reaction time. P2 performed the gestures more 
slowly, so 2 seconds were used instead of 1. Beta, low gamma, and high gamma features were combined 
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into a single feature vector. This vector was used for both visualizing the data in two dimensions by 
applying LDA (for visualization purposes, no cross-validation) and for applying cross-validated Euclidean 
distance to measure the distance between various gestures. To determine if the Euclidean distance 
between the two distributions (gestures) was significant, 95% confidence intervals were computed using 
jackknife resampling, performed once for each of the N trials (i.e. systematically leaving one trial out at a 
time). A distance was considered significant if the confidence interval did not include zero.  

Online Evaluation of BCI Performance  

These online tests, termed command control test, were visually prompted on a computer screen and 
consisted of 10 trials of 10-s rest periods where the participants focused on a fixation circle, followed by a 
period of up to 10-s where the participant was visually cued to attempt a specific movement (“Move your 
right ankle”). When an attempted movement was decoded (also referred to as a “click”), auditory and 
visual feedback were provided: a ping sound was played, and a feedback bar filled. Additionally, the task 
automatically advanced to the next trial if a successful click occurred within the move cue period. At a 
minimum, these runs were completed at the 3-, 6-, and 12-month timepoints post-implant but were 
generally performed more frequently. This task was chosen for analysis because it was performed 
regularly and represented one of the most basic tasks, enabling straightforward characterization of signal 
properties and stability.  

Online Neural Decoders and Evaluation Metrics 

The decoders utilized were generally based on real-time detection of transient oscillatory and 
pseudo-oscillatory neural activity59. A generalized algorithm used by most participants is described as 
follows. The neural data was first reduced to channels of interest based on prior evaluations of feature 
discriminability. The selected channels were then bandpass filtered into several gamma frequency bands. 
The resulting signals were then transformed into power-related metrics to quantify neural activity within 
each frequency band. To identify transient bursts, power and duration thresholds were applied (tuned for 
each participant and gesture), such that an event is classified as a burst when signal power exceeds the 
threshold for a minimum duration59. To determine if a switch occurred, a threshold on the number and rate 
of change of smoothed burst events was utilized. To prevent artifactual switches, if the feature was above 
a high threshold, the switch would be prevented. The system updated and produced predictions at 100 
ms intervals. 

Accuracy was measured as a percentage of trials classified correctly as either rest or move during the 
Command-Control Task. Specifically, a trial is deemed a successful rest (true negative) if no clicks were 
decoded during the cued rest period, while a trial is classified as a successful move (true positive) if a 
click was accurately decoded during the cued go period.  

The decoder generated predictions every 100 milliseconds, providing a continuous stream of 
classification outputs throughout each trial. However, accuracy is evaluated based on the overall success 
of each trial, considering whether the trial was correctly classified as rest or move, rather than evaluating 
the accuracy of individual predictions within the trial. This approach emphasizes the system's 
effectiveness in achieving the intended outcome for each trial as a whole. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 𝑇𝑃 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒;  𝑇𝑁 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒;  𝐹𝑃 =  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒;  𝐹𝑁 =  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

To examine the relationship between accuracy and signal modulation strength, classification accuracy 
was plotted against cross-validated Euclidean distance. The relationship was modeled using a saturating 

exponential function,  where a scales the vertical offset and b the rate of increase. This model 1 −  𝑎𝑒𝑏𝑥
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was chosen based on the expectation that accuracy increases approximately linearly with low modulation 
strengths but asymptotes near 1 (100%) as modulation increases. 

 
 
 

Extended Data  
 
Extended Data Table 1: Channel Information & Impedances  

Participant ID Data Follow-up 
(months) 

# Connected 
channels*  

# Active  
channels† 

Impedance  
(mean ± std dev 

kΩ) 

Impedance 
difference from 

reference  
(mean ± std dev 

kΩ) 

1 6 16 13 41.0 ± 25.8 17.2 ± 19.9 

2 12 11 9 32.5 ± 10.1 13.0 ± 6.7 

3 6 13 12 22.7 ± 6.8 7.9 ± 4.3 

5 12 12 10 25.0 ± 4.8 4.7 ± 3.5 

6 12 12 9 32.3 ± 31.7 17.6 ± 29.0 

* Maximum channels on the stent-electrode array is 16. 
† Includes channels that have in-situ impedance less than 100kΩ and visually clean. 
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Extended Data Fig. 1: Referencing schemes and artifacts.  

a, Example resting data recorded with the reference channel selected from 1 of the 16 electrodes on the 
stent. b, Example resting data recorded with the reference channel selected to the IRTU in the 
subcutaneous subclavicular pocket exhibiting visual presence of ECG. c, Example resting data from 2 
channels recorded with the reference channel selected to the IRTU (left) and the resulting signal when the 
data is software re-referenced to the bottom channel demonstrating a visual reduction in the ECG 
present. d, Example of a data recording where line noise was present on all channels. Example time 
series of two channels (left) and corresponding power spectral density using Welch's method showing all 
channels (thin, colored lines) and mean of all channels (thick, black line) with arrows pointing to the 
frequency of line noise and its harmonics (60, 120, and 180 Hz). e, Example of variations in the residual 
ECG signals using hardware stent reference. The top shows minimal residual ECG, while the bottom 
displays moderate residual ECG, both recorded simultaneously during rest.  IRTU, internal receiver 
transmitter unit; ECG, electrocardiography 
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